MISCELLANEOUS I - Simple solution calculations using n=CV

- 1. Calculate the mass of NaNO₃ required to prepare a 400ml solution of 0.150mol/L NaNO₃ solution.
- 2. A solution is prepared by dissolving 45g of K₂SO₄ into 2.5L of distilled water. Calculate:
- a) The concentration of K+ ions?
- b) The concentration of sulfate ions?
- 3. How many moles of AgNO₃ are present in a 125ml sample of 0.215mol/L AgNO₃ solution?
- 4. What volume of water needs to be added to 12g of pure sodium fluoride to produce a solution with a concentration of 2.50mol/L?
- 5. What is the concentration of a solution prepared by dissolving 38g of Aluminium nitrate in 120ml of water?
- 6. What mass of solid oxalic acid crystals (formula $H_2C_2O_4.2H_2O$) needs to be used to make a 1.05L sample of 0.420mol/L $H_2C_2O_4$ solution?
- 7. What mass of $CuSO_4.5H_20$ crystals would remain in a beaker if a 200ml of 0.525mol/L $CuSO_4$ solution is left to evaporate to dryness?
- 8. Consider a sample of 55ml of 0.425mol/L Iron(III) nitrate solution. Calculate the following
- a) The concentration of Fe³⁺ ions
- b) The concentration of NO₃¹⁻ions
- c) The moles of Fe3+ ions
- d) The moles of Nitrate ions
- e) The mass of Fe present in the sample
- 9. What is the concentration (in mol/L) of Chloride ions when 5.09g of Aluminium Chloride is dissolved in 250ml of water?
- 10. A 100ml sample of a solution of sulfuric acid is known to have a H⁺ ion concentration of 0.2mol/L. What is the concentration of H₂SO₄?

$$\frac{7}{7} \wedge (C_{11}SO_{11}, SU_{10}) = CV$$

$$= 0.1757 \times 0.12$$

$$= 0.105 \text{ m/s}$$

$$= 26.29$$

$$8 \quad a) \quad fe(MO_{3})_{3} \quad \frac{U_{10}}{V_{11}} = \frac{1}{2} \times 0.25$$

$$= 1.305 \text{ m/s}$$

$$= 1$$

= 0191 ml 1-1